The healthcare industry in the United States faces a veritable tsunami of cyberthreats, the darkest of which may be ransomware. Consider the following scenario:

You are the practice administrator for a large medical office and a panicked nurse-practitioner rushes into your office. She is frantically trying to explain that her computer is not working and that she urgently needs a patient’s electronic medical record because the doctor is preparing for an emergent surgery. You quickly learn the computer is unresponsive because it has been locked and bitcoins are needed to pay a ransom to an anonymous hacker. What can you do?

This is not a futuristic scenario—such nightmarish demands are already with us, and are multiplying quickly. Indeed, a scenario similar to this can happen, not necessarily just in a hospital setting, but to any company, governmental organization or individual. But when it happens in the healthcare arena, quality of care and patient lives could be at risk. The problem is the fastest growing malware threat, known as ransomware.

Ransomware is a type of malware that infects a computer and restricts a user’s access to the infected computer. A variant known as crypto ransomware encrypts a user’s data, making it nearly impossible to recover files and data without the decryption key. According to the Federal Bureau of Investigation (FBI), ransomware attacks have occurred more than 4,000 times daily since January 1, 2016—quadruple the approximately 1,000 attacks per day seen in 2015.

In February 2016, Hollywood Presbyterian Medical Center paid a $17,000 ransom to a hacker who locked access to computer systems and prevented the hospital from sharing communications electronically. Although Hollywood Presbyterian emphasized that patient care was not compromised, a hacker who can gain access to a network

1 www.us-cert.gov/ncas/alerts/TA14-295A
has the potential for inflicting catastrophic damage to a healthcare provider.

Hollywood Presbyterian is not alone, since the number of hospitals and other entities being hit with such attacks continues to grow. Indeed, on Saturday, November 26, 2016, the San Francisco Municipal Light Rail System was hacked, and a ransomware demand of $73,000 in bitcoin was made.4

Healthcare providers maintaining protected health information (PHI) face other daunting issues. Pursuant to the Health Insurance Portability and Accountability Act (HIPAA) regulations, if the attack is deemed a security incident, certain protocols may be required. Further, if the attack is deemed a breach, mandatory victim notification rules may require immediate disclosures.

How does this happen?
Hackers are always enhancing their tradecraft in an effort to get around a victim’s defenses. Cybercriminals have even made it possible for fraudsters with few, if any, coding skills to launch attacks that lock up computer systems at small businesses, among other targets.

In an alarming development, groups of cybercriminals sell exploit kits, invisible web applications that deliver ransomware and other malware. Other criminals peddle payloads, the malware that is used to lock up files, or obfuscation services that make malware more difficult to detect.5

Nevertheless, victimization normally involves several steps, so there are opportunities to prevent the attack. Some ransomware may alert the victim of a demanded payment before the user can gain control of the compromised computer. Other variants may lock control of the user’s screen. In these attacks, the victim can generally regain normal computer operations by deleting the malware and, in certain circumstances, removing and reinstalling the operating system.

Conversely, an effective crypto ransomware attack prevents any access to the data without the decryption key. This causes the victim to choose between paying the ransom or losing the data. More problematic, paying the ransom is no guarantee the hacker(s) will actually provide the encryption key. They may decide to ask for more.

Let’s consider a crypto ransomware attack and its effect on the victim. Like any malware, the malicious code must first get introduced to a computer.

Questions to consider as an auditor

The Basics

1. How do ransomware extortionists gain access to health system computers?
2. What role can employee education play in preventing ransomware infections?
3. Are there steps health systems should be taking to reduce the risk of ransomware or to decrease its impact?
4. What can be learned from law enforcement’s efforts to combat ransomware?
5. If your organization falls prey to ransomware, should you pay the ransom?
6. If you pay the ransom, how likely are you to receive the decryption key and be able to view your files?
7. What happens if you don’t pay the ransom? Are your files lost forever?

5 www.wsj.com/articles/ransomware-a-growing-threat-to-small-businesses-1429127403
Social engineering—exploiting the weakest link in computer security, the human being—is still the most common method of attack. The malware may be sent to thousands of potential victims in the form of spam. A user casually downloads an attachment from an email or clicks on a link in an innocuous-looking email and the malware gets into the computer. More sophisticated attacks target specific individuals in an organization.

Attacks have occurred more than 4,000 times daily since January 1, 2016.

Cybercriminals seem to have a dark sense of humor as well in order to increase victims’ response rates to ransomware demands. The hackers sometimes will offer a freemium service, decrypting one or a few randomly selected files at no charge. Other ransomware schemes double the price of decryption after a couple of days to create a sense of urgency.\(^6\)

A hacker can often find target information from a victim’s own website. Other times, this information is learned by surfing social sites including Facebook and LinkedIn. Armed with this information, hackers can send clever emails enticing an unsuspecting employee to click on a malicious link or download the malware itself.

Other known methods include ‘accidentally’ dropping thumb drives in a corporate environment in the hope that some unsuspecting good Samaritan will pick it up and insert it into a USB port—and thus introduce malware. An employee spotting a thumb drive with the corporate logo in the company cafeteria is a vulnerable target.

A disgruntled employee can more easily gain access than an outsider.

Another significant vulnerability for the introduction of malware to the victim’s system, either wittingly or unwittingly, is through third-party stakeholders like vendors and partners. An environment is only as strong as its weakest link, and these third parties should be required to follow the same stringent protocols required by the host company.

Finally, the threat of malicious insiders cannot be overlooked. A disgruntled employee or one just desiring to extort his (or her) employer can more easily gain access than an outsider.

The attempted introduction of malware into a computer presents an opportunity for the computer system to recognize the malware and stop it. Antivirus software that is updated in a timely manner is effective against known malware. However, when a skilled hacker creates new malware to exploit a previously unknown vulnerability, this “zero day attack” will enter the computer unimpeded because the malware is not recognized as malicious by the antivirus software.

Once crypto ransomware is live within the system, it will attempt to execute its next preprogrammed step. The malware will seek the hacker’s command and control server in order to get the encryption key. Here again is an opportunity for the victim’s defenses to detect an outbound communication and stop the attack.

One Russian cyberthreat group is reported to have used a Twitter feed as a communication protocol, using commands embedded in images through steganography.\(^7\) The hacker receives communication from text embedded in photographs and then sends Tweets through the corporate feed.

The number of hospitals and other entities being hit with such attacks continues to grow.

When the malware is active in the victim’s network, there are defenses that can detect the crypto ransomware, and this is especially true once encryption is initiated by the malware. Further, malware designers have learned to look for backup systems and files with recent updates as the prime place to initiate encryption to gain maximum damages before being detected.

At this point in the attack, the method of dealing with encrypted data will depend on a variety of factors. If the data has been backed up in a secure location, the victim

\(^6\) Ibid

\(^7\) www.documentcloud.org/documents/2186063-apt29-hammertoss-stealthy-tactics-define-a.html
can breathe a sigh of relief. The operating system can be
reinstalled and the backed-up data used without major
inconvenience or interruption.

If there is no data backup, the victim has to make a difficult
decision. Questions to ask include:

1. Should the authorities be notified?
2. What is the value of the data?
3. In the case of medical data, is patient care an issue?
4. How much is the ransom?
5. What is the likelihood another ransom demand will be
 made despite a previous payment?
6. Would the ransom payment incentivize the hacker(s) to
 repeat the extortion activities against another victim?

These are difficult decisions and they should be made
with the consultation and assistance of well-regarded
experts. Upon discovery of the issue, management should
promptly refer to their cyberincident response plan, if one
exists. The plan should invoke the immediate engagement
of a cyberincident response team that will include cyber
forensic experts and legal counsel. After consultation with
legal counsel, an assessment needs to be made of when to
contact law enforcement and regulatory authorities.

Ransom demand
After encryption is complete, the victim is notified with a
screen message advising that the files have been encrypted
and a decryption key must be purchased to unlock the data.

The preferred method of payment is bitcoin due to the
anonymity with which the hacker can receive payment.
There may also be a countdown clock giving the victim a
set number of hours to pay. One such variant, known as
CryptoLocker, allows the victim 72 hours to pay with bitcoin.
Lastly, there may also be a warning that removal of the
malware will lead to destruction of the decryption key.

To pay or not
Like any ransom, no one wants to pay it. In a May 2016
presentation at the Center for Long-Term Cybersecurity
at the University of California-Berkeley, FBI Cyber Division
Assistant Director James Trainor said that he strongly advises
companies not to pay. The reasoning behind the no-pay
policy is that paying a ransom encourages bad actors to
victimize others. An organization’s ultimate decision to pay
or not to pay must be very deliberate after considering the
interests of all the stakeholders. In the case of healthcare
providers, a patient that had no role in the attack could be
potentially victimized by their caregiver’s negligence.

An environment is only as
strong as its weakest link.

In addition to ransomware, the malware may also contain
other malicious code capable of recording keystrokes and
stealing user names and passwords. Some variants will steal
bank account details, and exploit information from social
media to scam relatives and friends. When the malware
attackers have this information, they can use it to cause
severe damage ranging from identity theft to financial loss.

When computer credentials are stolen (access name and
password), the hacker usually resells this stolen data to other
cybercriminals online. Most importantly, this process from
obtaining and selling credentials to hacking a victim’s bank
account may take many months.

HIPAA implications
As if these issues were not enough, HIPAA-covered entities
have another set of issues to consider. Is a potential
attack a security incident, breach, or something else? The
appropriate answer for entity responders is that it is neither
of these until a lawyer competent in this area says it is.
Inaccurate internal misclassification and documentation of
events may unnecessarily increase liability for an entity.

Upon discovery of the issue,
management should promptly
refer to their cyberincident
response plan, if one exists.

A security incident is the attempted or successful unauthorized
access, use, disclosure, modification or destruction of
information or interference with system operations in an
information system. The presence of malware on a covered
entity’s system is likely to be a security incident. If so, the
entity must identify and respond to mitigate, to the extent
practicable, harmful effects of security incidents that are
known to the covered entity or business associate and
document security incidents and their outcomes.

4 45 CFR §§ 164.302
5 45 CFR §§ 164.308(a)(6)(ii)
The next issue to resolve is whether the event in question is a breach, thereby triggering mandatory notification requirements. Whether the event is a breach is a fact-specific determination. A breach under the HIPAA regulations is defined as the acquisition, access, use, or disclosure of PHI that compromises the security or privacy of the information.10

FBI Cyber Division Assistant Director James Trainor strongly advises companies not to pay.

A hacker that has caused encryption of electronic protected health information (ePHI) will be presumed to be a breach because the ePHI disclosure was made to an unauthorized individual.11

However, this presumption is rebuttable if the entity demonstrates there is a low probability that the PHI has been compromised based on a risk of factors detailed in the regulations.12 This last provision may save many providers that keep their ePHI encrypted. Again, this is a fact-dependent analysis that should be made by legal counsel.

If a breach is deemed to have occurred, the HIPAA regulation requires notification to the Health and Human Services Administration, to victims, and, when the number of victims exceeds 500, to the media.13

Conclusion

An effective crypto ransomware attack is a multistep process that gives its intended victim several opportunities to defend against it. Organizations need to start with a risk assessment to determine their unique vulnerabilities. Training is essential not only for network administrators, but for all computer users.

Social engineering continues to be one of the top risks, and the solution requires resource-intensive awareness training. Mandatory password changes every 90 days will help mitigate the risk of stolen credentials.

Network administrators must be following best practices, including software updates, implementation of resilient firewalls, monitoring all incoming and outgoing traffic. Assuming all else fails—and this should be a working assumption—your organization’s data must be constantly backed up in a secure and redundant environment. NP

10 CFR 164.402
11 www.hhs.gov/sites/default/files/RansomwareFactSheet.pdf
12 164.402(2)
13 45 CFR 164.406-408

©ClasBergen
clasbergen.com

"Who was put in charge of making the new organizational chart?"